

Syntheses, structure and rare earth metal photoluminescence of new and known isostructural $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Ce, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu}$) compounds

Shrikant A. Mohitkar, G. Kalpana, K. Vidyasagar*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

ARTICLE INFO

Article history:

Received 6 October 2010

Received in revised form

31 December 2010

Accepted 9 January 2011

Available online 15 January 2011

Keywords:

Rare earths

Molybdoantimonites

X-ray diffraction

Solid-state structures

Photoluminescence

ABSTRACT

Nine new $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Ce, Pr, Eu, Tb, Ho, Er, Tm, Yb, Lu}$) compounds have been synthesized by solid-state reactions. They are isostructural with six reported analogues of yttrium and other lanthanides and the monoclinic unit cell parameters of all fifteen of them vary linearly with the size of A^{3+} ion. Single crystal X-ray structures of eight $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Ce, Pr, Eu, Gd, Tb, Ho, Er, Tm}$) compounds have been determined. Neat $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm}$) compounds exhibit characteristic rare earth metal photoluminescence.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Crystalline tellurites containing d^0 transition metal ions have been attracting the attention of solid-state chemists from the point of view of both structural diversity and second harmonic generation (SHG) activity [1–4]. Te^{4+} and isoelectronic Sb^{3+} exhibit similar coordination versatility in oxides and exist in three asymmetric coordinations [5,6], namely, pyramidal, disphe-noid and square pyramidal. Antimonites containing d^0 transition metal ions are rather few and are mostly ternary oxides. Some of these compounds were studied from the point of view of luminescence and ferroelectric properties [6].

We investigated the quaternary $A/\text{Mo}/\text{Sb}/\text{O}$ ($A=\text{rare earth metal}$) system and reported [5] the synthesis and structural characterization of six isostructural $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Y, La, Nd, Sm, Gd, Dy}$) compounds, which represent the first examples of rare earth metal molybdoantimonites. They crystallize in $C2/c$ space group with four formula units and contain A^{3+} cations and discrete tetramolybdochdiantimonite anionic aggregates ($\text{Mo}_4\text{Sb}_2\text{O}_{18}$) $^{6-}$. In view of the obvious scope for isostructural compounds of the rest of lanthanides and their lanthanide photoluminescence, a continuation of this investigation has been considered worthwhile and, therefore, taken up. The results of

these studies, namely, synthesis of nine new isostructural $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Ce, Pr, Eu, Tb, Ho, Er, Tm, Yb, Lu}$) compounds, X-ray single crystal structures of $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Ce, Pr, Eu, Gd, Tb, Ho, Er, Tm}$) compounds and the rare earth metal photoluminescence of neat $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm}$) compounds, are presented in this paper.

2. Experimental section

2.1. Synthesis and crystal growth

MoO_3 , MoO_2 , Sb_2O_3 , $\text{Ce}_2(\text{MoO}_4)_3$, CeO_2 , Pr_6O_{11} , Tb_4O_7 and $A_2\text{O}_3$ ($A=\text{Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu}$) oxides of high purity (> 99.99%) were used for the solid-state synthesis and single crystal growth of thirteen $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu}$) compounds, in evacuated sealed quartz tubes of 7 cm length and 1.4 cm diameter. Neodymium, samarium, gadolinium and dysprosium compounds were reported [5], whereas the remaining nine compounds are new. All lanthanide oxides, except CeO_2 , were dried by heating to 900 °C for 6 h, before use. In the synthesis and crystal growth of all compounds, the reactant mixtures were initially heated at 650 °C for 1 day. Only the details of further heating and subsequent cooling to room temperature are mentioned below.

Polycrystalline samples of $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ compounds were synthesized quantitatively, on a scale of about 0.5 g, by heating

* Corresponding author. Fax: +91 4422570509.

E-mail address: kvsagar@iitm.ac.in (K. Vidyasagar).

stoichiometric mixtures of appropriate reactants at 700 °C for 3 days and then cooling over 1 day. MoO_2 , along with MoO_3 , was employed in the synthesis of cerium, praseodymium and terbium compounds, when CeO_2 , Pr_6O_{11} , Tb_4O_7 were the reactants, respectively.

Crystals of $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Ce, Pr, Gd, Tb, Ho, Er, Tm}$) compounds were obtained from MoO_3 flux, by heating at 900 °C for 2 days and then cooling over 3 days. 1:6:1 molar mixtures of A_2O_3 , MoO_3 and Sb_2O_3 were used for $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Gd, Ho, Er, Tm}$) compounds. The crystals of praseodymium and terbium compounds were obtained from 1:2 molar mixtures of polycrystalline sample of $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Pr, Tb}$) and MoO_3 , whereas a 1:3:1 molar mixture of $\text{Ce}_2(\text{MoO}_4)_3$, MoO_3 and Sb_2O_3 was employed for crystals of cerium compound. In the case of europium compound, a 1:8:1 molar mixture of Eu_2O_3 , MoO_3 and Sb_2O_3 was heated at 950 °C for 2 days and cooled over 10 days. All title compounds were obtained as dark yellow block shaped single crystals, along with colourless MoO_3 crystals. The crystals of the title compounds were manually separated. It was possible to dissolve the crystals of MoO_3 in ~2% Na_2CO_3 solution. In the cases of praseodymium and erbium compounds, green crystals of $\text{Pr}_2\text{Mo}_4\text{O}_{15}$ and violet crystals of unidentified composition were obtained, respectively, along with those of the title compounds. Crystal growth attempts for ytterbium and lutetium compounds were not successful.

2.2. X-ray diffraction and crystal structure

The powder X-ray diffraction (XRD) patterns of the title compounds were recorded on a Bruker D8 Advanced powder X-ray diffractometer using $\text{Cu K}\alpha$ ($\lambda=1.5406 \text{ \AA}$) radiation. The monophasic nature of the compounds was verified by comparing their powder XRD patterns with those simulated, using the LAZY-PULVERIX programme [7], on the basis of their single crystal X-ray structures. Single crystals of $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ compounds, suitable for XRD, were selected and mounted on thin glass fibre with epoxy glue and optically aligned on a Bruker APEX II charge coupled device X-ray diffractometer using a digital camera. X-ray data collection, space group determination and structure refinement [8,9] and drawings [10,11] were carried out as reported previously [5]. Structures of eight $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Ce, Pr, Eu, Gd, Tb, Ho, Er, Tm}$) compounds were modelled, starting with the refined positional parameters of yttrium compound [5], and only yttrium was appropriately replaced. All atoms were refined anisotropically. The final Fourier difference maps did not show any chemically significant feature and the peaks with an electron density of $> 1 \text{ e}/\text{\AA}^3$ were found to be ghosts of the existing atoms.

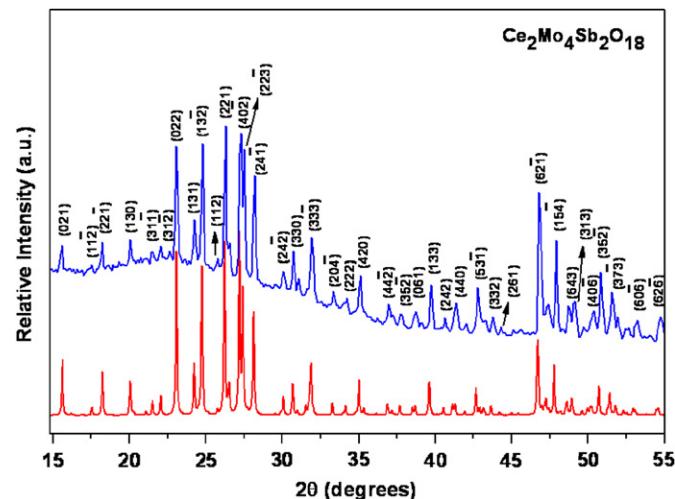
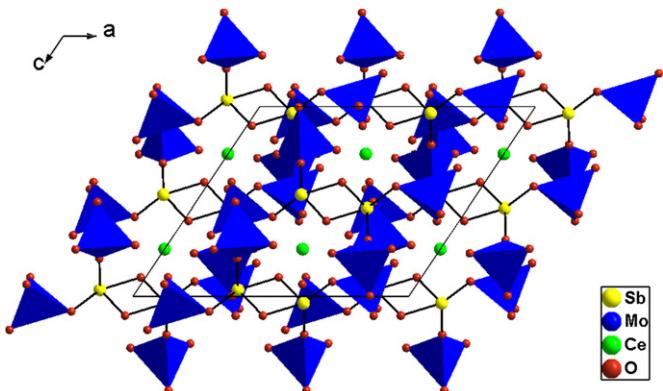
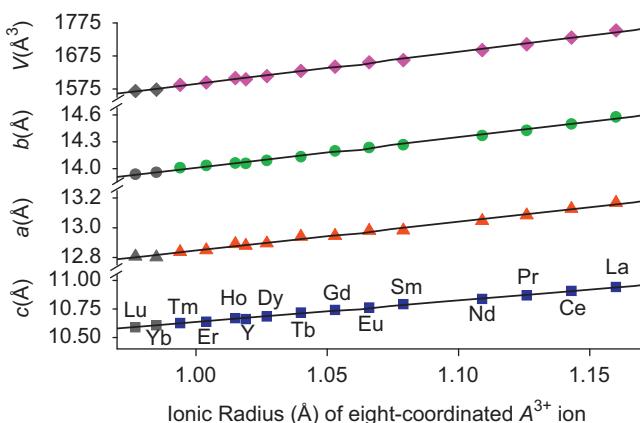
2.3. Spectroscopic characterization

UV/vis absorption and fluorescence spectra were recorded at room temperature on a Cary 5E Varian UV/vis/NIR and Horiba-Jobin Yvon Fluoromax-4P spectrophotometers, respectively. Lifetime measurements were carried out on Spectra-Physics LAB-150 laser flash photolysis spectrometer.

3. Results and discussion

3.1. Synthesis and structure

Polycrystalline samples of nine new $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Ce, Pr, Eu, Tb, Ho, Er, Tm, Yb, Lu}$) compounds have been synthesized from stoichiometric mixtures of appropriate reactants by conventional solid-state method. Single crystal X-ray structures have been determined for seven new $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Ce, Pr, Eu, Tb, Ho, Er, Tm}$) compounds and known [5] $\text{Gd}_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$. Pertinent




Table 1
Pertinent crystallographic data for $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Ce, Pr, Eu, Gd, Tb, Ho, Er, and Tm}$) compounds.

<i>A</i>	Ce	Pr	Eu	Gd	Tb	Ho	Er	Tm
Formula	$\text{Ce}_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$	$\text{Pr}_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$	$\text{Eu}_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$	$\text{Gd}_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$	$\text{Tb}_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$	$\text{Ho}_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$	$\text{Er}_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$	$\text{Tm}_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$
Formula weight	1195.50	1197.06	1219.18	1229.76	1233.10	1245.12	1249.78	1253.12
Crystal system	Monoclinic							
Space group (no.)	$C2/c (15)$							
<i>a</i> (Å)	13.1279(4)	13.0849(4)	12.984(3)	12.9457(2)	12.9398(4)	12.8906(3)	12.8501(3)	12.837(3)
<i>b</i> (Å)	14.4996(4)	14.4754(4)	14.249(3)	14.1971(3)	14.1335(4)	14.0628(3)	14.0361(4)	14.010(3)
<i>c</i> (Å)	10.9059(3)	10.8959(6)	10.770(2)	10.7399(3)	10.7178(5)	10.6968(2)	10.6372(2)	10.626(4)
$\beta (^\circ)$	123.515(10)	123.544(10)	123.64(3)	123.696(10)	123.755(10)	123.751(10)	123.847(7)	123.847(7)
<i>V</i> (\AA^3)	1730.79(9)	1710.24(12)	1658.9(8)	1642.27(6)	1629.69(10)	1608.19(6)	1594.63(7)	1587.3(8)
<i>Z</i>	4	4	4	4	4	4	4	4
ρ_{calcd} (g/cm^3)	4.588	4.649	4.881	4.974	5.026	5.143	5.206	5.244
$\mu(\text{Mo K}\alpha)$ (mm^{-1})	11.099	11.607	13.653	14.230	14.880	16.124	16.863	17.546
Crystal size (mm^3)	$0.35 \times 0.25 \times 0.22$	$0.38 \times 0.25 \times 0.20$	$0.25 \times 0.22 \times 0.17$	$0.22 \times 0.20 \times 0.18$	$0.19 \times 0.15 \times 0.11$	$0.26 \times 0.21 \times 0.18$	$0.20 \times 0.18 \times 0.15$	$0.22 \times 0.20 \times 0.20$
$\lambda(\text{Mo K}\alpha)$ (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Temperature (K)	298	298	298	298	298	298	298	298
θ range (°)	2.24–28.29	2.82–28.27	2.45–28.29	2.28–28.33	2.29–28.32	2.39–24.98	2.30–28.34	2.31 to 28.27
Total/independent reflections	6066/2060	5559/1713	5998/1999	5879/1970	4737/1938	5621/1876	5213/1824	5213/1824
Reflections with $h > 2\sigma (I)$	2028	1693	1948	1878	1925	1393	1804	1730
Parameters refined	120	120	120	120	120	120	120	120
$R1/\text{wR}^2$ ^b	0.0178/0.0402	0.0227/0.0622	0.0181/0.0394	0.0216/0.0504	0.0215/0.0571	0.0226/0.0525	0.0220/0.0530	0.0303/0.0781
Goodness of fit	1.204	1.305	1.232	1.213	1.073	1.346	1.178	1.174

^a $R1 = \sum |F_{\text{c}}| - |F_{\text{o}}| / \sum |F_{\text{c}}|$
^b $\text{wR}^2 = [\sum w(F_{\text{o}}^2 - |F_{\text{c}}|^2)^2] / \sum w(F_{\text{o}}^2)$

Table 2Bond lengths (Å) for $A_2Mo_4Sb_2O_{18}$ ($A=$ Ce, Pr, Eu, Gd, Tb, Ho, Er, Tm) compounds.

A	Ce	Pr	Eu	Gd	Tb	Ho	Er	Tm
Sb–O(4)	2.328(3)	2.322(3)	2.299(3)	2.294(3)	2.283(4)	2.268(5)	2.275(5)	2.281(5)
Sb–O(8)	1.975(3)	1.985(4)	1.983(3)	1.979(3)	1.978(4)	1.980(5)	1.976(6)	1.986(5)
Sb–O(9)	2.066(3)	2.065(3)	2.068(3)	2.067(3)	2.070(4)	2.072(5)	2.068(5)	2.070(5)
Sb–O(9)'	1.992(3)	1.995(4)	1.995(3)	1.992(3)	1.993(4)	1.992(5)	1.994(5)	1.992(5)
Mo(1)–O(1)	1.719(3)	1.719(4)	1.728(3)	1.726(4)	1.726(4)	1.726(6)	1.738(6)	1.733(5)
Mo(1)–O(2)	1.747(3)	1.749(4)	1.755(3)	1.750(3)	1.750(4)	1.744(5)	1.743(6)	1.747(5)
Mo(1)–O(3)	1.761(3)	1.764(4)	1.761(3)	1.763(4)	1.761(4)	1.763(5)	1.764(6)	1.769(5)
Mo(1)–O(4)	1.814(3)	1.812(4)	1.820(3)	1.814(3)	1.821(4)	1.824(5)	1.819(6)	1.823(5)
Mo(2)–O(5)	1.731(3)	1.719(4)	1.736(3)	1.738(4)	1.736(4)	1.737(6)	1.749(6)	1.750(5)
Mo(2)–O(6)	1.733(3)	1.731(4)	1.731(3)	1.727(4)	1.729(4)	1.731(5)	1.729(6)	1.728(5)
Mo(2)–O(7)	1.742(3)	1.746(4)	1.741(3)	1.737(4)	1.737(4)	1.738(5)	1.733(6)	1.743(5)
Mo(2)–O(8)	1.815(3)	1.806(4)	1.815(3)	1.813(3)	1.814(4)	1.812(5)	1.817(6)	1.810(5)
A(1)–O(2) \times 2	2.426(3)	2.407(4)	2.357(3)	2.343(3)	2.342(4)	2.319(5)	2.299(5)	2.285(5)
A(1)–O(4) \times 2	2.470(2)	2.451(4)	2.393(3)	2.384(3)	2.366(4)	2.347(5)	2.338(5)	2.322(5)
A(1)–O(7) \times 2	2.523(3)	2.506(4)	2.477(3)	2.465(4)	2.465(4)	2.449(5)	2.438(6)	2.427(5)
A(1)–O(9) \times 2	2.476(3)	2.452(3)	2.394(3)	2.381(3)	2.362(4)	2.338(5)	2.327(5)	2.318(5)
A(2)–O(1) \times 2	2.489(3)	2.474(4)	2.425(3)	2.414(4)	2.401(4)	2.387(6)	2.365(6)	2.363(5)
A(2)–O(3) \times 2	2.451(3)	2.427(3)	2.371(3)	2.360(4)	2.346(4)	2.323(5)	2.312(6)	2.296(5)
A(2)–O(5) \times 2	2.477(3)	2.468(4)	2.399(3)	2.377(3)	2.368(4)	2.340(6)	2.313(6)	2.304(5)
A(2)–O(6) \times 2	2.490(3)	2.475(4)	2.431(3)	2.419(4)	2.412(4)	2.390(5)	2.383(6)	2.382(5)

Fig. 1. Observed (blue) and simulated (red) powder XRD patterns of $Ce_2Mo_4Sb_2O_{18}$ compound (for interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).**Fig. 3.** Polyhedral representation of the unit cell of $Ce_2Mo_4Sb_2O_{18}$ viewed along b -axis. Mo_4 tetrahedra are shaded in blue (for interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).**Fig. 2.** Plots of unit cell parameters (a , b , c) and volumes (V) of $A_2Mo_4Sb_2O_{18}$ ($A=Y$, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) compounds against the ionic radii of eight-coordinated A^{3+} ions.

crystallographic data and bond lengths are presented in Tables 1 and 2, respectively. The CIF files for these eight compounds are deposited in the Fachinformationszentrum Karlsruhe, Germany (Fax: +49-7247-808-666; E-mail: crysdata@fiz-karlsruhe.de) and given the deposition numbers, CSD-422101 (Ce), CSD-422102 (Pr), CSD-422103 (Eu), CSD-422104 (Gd), CSD-422105 (Tb), CSD-422106 (Ho), CSD-422107 (Er) and CSD-422108 (Tm). As the crystal growth attempts for ytterbium and lutetium compounds were unsuccessful, their monoclinic unit cell parameters have been obtained from their powder XRD data, by using the programme CELREF [12]. The values of a (Å), b (Å), c (Å), β (°) and V (Å³) are 12.801(10), 13.960(5), 10.606(10), 123.88(5) and 1573(2) for ytterbium compound and 12.806(8), 13.936(5), 10.589(6), 123.87(3) and 1569(2) for lutetium compound, respectively. Thus the present and previous [5] reports together represent the synthesis of fifteen isostructural $A_2Mo_4Sb_2O_{18}$ ($A=Y$, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) compounds, of which all, but ytterbium and lutetium compounds, are structurally characterized by single crystal X-ray diffraction study.

Powder XRD patterns of all nine new isostructural $A_2Mo_4Sb_2O_{18}$ compounds are similar and, as shown for cerium

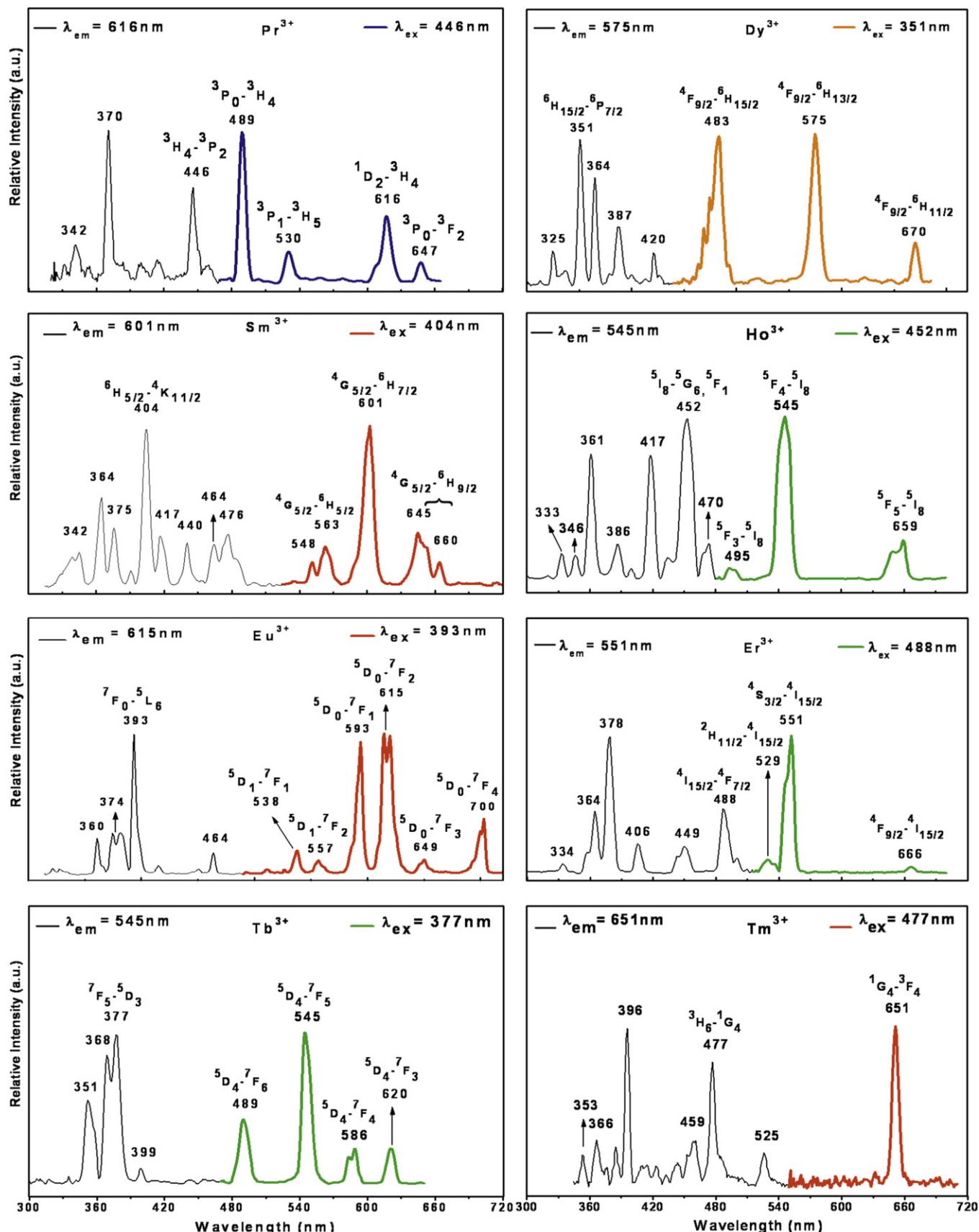


Fig. 4. Photoluminescence excitation (black) and emission (blue/red/orange/green) spectra of $A_2Mo_4Sb_2O_{18}$ ($A=Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm$) compounds (for interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

compound (Fig. 1), agree with the simulated ones. As shown in Fig. 2, the values of unit cell parameters a , b , c and volume V of the fifteen isostructural $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ compounds vary linearly with the ionic radii of eight-coordinated A^{3+} ions [13], in accordance with Vegard's law. These compounds have "zero-dimensional" structures [5] containing A^{3+} cations and discrete, centrosymmetric tetramolybdochalcogenite anionic aggregates ($\text{Mo}_4\text{Sb}_2\text{O}_{18}$)⁶⁻ (Fig. 3). The A^{3+} ions reside on $4e$ Wyckoff sites with two-fold axis of symmetry and have dodecahedral coordination. The molybdenum, antimony and oxygen atoms occupy general $8f$ Wyckoff positions. The coordinations of Mo^{6+} and Sb^{3+} ions are tetrahedral and disphenoidal, respectively. The values of bond lengths (Table 2) compare well with those reported in the literature [5]. The values of bond valence sums [14] are found to be in the ranges of 5.85–6.13, 3.08–3.15 and 3.22–3.39 for Mo^{6+} , Sb^{3+} and A^{3+} ions, respectively.

Apart from the previously reported [5] structural comparisons of these compounds, $\text{BaMo}_2\text{TeO}_9$ and other molybdochalcogenites, an interesting structural similarity could be envisaged with $\text{Bi}_2\text{Mo}_2\text{O}_9$, which has asymmetric unit content of $\text{Bi}_4\text{Mo}_4\text{O}_{18}$ with four crystallographically distinct atoms of molybdenum and bismuth each [15]. It could be conceived to contain ($\text{Mo}_4\text{Bi}_2\text{O}_{18}$)⁶⁻ anionic aggregates, similarly built from disphenoidal BiO_4 and tetrahedral MoO_4 moieties. They are, in contrast, connected to one another through $\text{Bi}-\text{O}$ bonds, which give rise to three-dimensional network of ($\text{Mo}_4\text{Bi}_2\text{O}_{18}$)⁶⁻ and those bismuth atoms thus become asymmetrically five-coordinated. The other two bismuth atoms have dodecahedral and disphenoidal coordination geometries. The coordinations of bismuth atoms are based on the cut-off value of 2.65 \AA for $\text{Bi}-\text{O}$ bond length.

$\text{TiPrMo}_2\text{O}_8$, $\text{TiSmMo}_2\text{O}_8$, $\text{TiEuMo}_2\text{O}_8$, $\text{Ti}_2\text{A}(\text{MoO}_4)_4$, $\text{Bi}_{2-x}\text{A}_x\text{MoO}_6$, $\text{Bi}_{2-x}\text{Ce}_x\text{Mo}_3\text{O}_{12}$, $\text{A}_{2/3}[\text{Bi}_{12}\text{O}_{14}](\text{MoO}_4)_5$, $\text{Nd}_2\text{MoTe}_3\text{O}_{12}$, $\text{La}_2\text{MoTe}_3\text{O}_{12}$, $\text{Pr}_2\text{MoTe}_4\text{O}_{14}$, $\text{Nd}_2\text{MoTe}_4\text{O}_{14}$ and $[\text{A}(\text{H}_2\text{O})_x]_2[\text{TeMo}_6\text{O}_{24}] \cdot y\text{H}_2\text{O}$ ($x=6/7$; $y=6/7/8/10$) compounds of A -Mo-M-O (A =rare earth metal; M =heavy main group element) system were reported [16–19] to have zero, layered and three-dimensional structures. Almost all of these compositionally diverse phases have, as found in title compounds, tetrahedrally coordinated molybdenum. The exceptions are those ($A=\text{Gd-Lu}$, Y) members of $\text{Bi}_{2-x}\text{A}_x\text{MoO}_6$ series with the so-called fluorite-related superstructure of α - R_2MoO_6 , wherein molybdenum is five-coordinated and $[\text{A}(\text{H}_2\text{O})_x]_2[\text{TeMo}_6\text{O}_{24}] \cdot y\text{H}_2\text{O}$ that contain Anderson-type anion with octahedrally coordinated molybdenum. Characteristic rare earth metal photoluminescence was reported [18] for neat $\text{Nd}_2\text{MoTe}_3\text{O}_{12}$, $\text{Pr}_2\text{MoTe}_4\text{O}_{14}$ and $\text{Nd}_2\text{MoTe}_4\text{O}_{14}$ compounds only.

3.2. Photoluminescence

Eleven of these fifteen isostructural $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ compounds are potential candidates for a study of rare earth metal photoluminescence, the other four being lanthanum, gadolinium, lutetium and yttrium compounds. However, photoluminescence of only eight $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm}$) compounds has been investigated. Cerium compound and, as expected, neodymium and ytterbium compounds are found to exhibit no photoluminescence in the 200–800 nm range studied.

The absorption spectra of $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Sm, Tb, Dy, Tm}$) compounds are featureless, whereas those of $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Pr, Eu, Ho, Er}$) compounds consist of bands that are observed in the excitation spectra [20–23]. The room-temperature excitation and emission spectra, in the range 300–720 nm, of eight $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm}$) compounds are presented in Fig. 4. All the spectral features agree with those reported in the literature [23–27]. These compounds show characteristic excitation and emission peaks of trivalent lanthanide ion and the

electronic transitions for all of the observed emission peaks, except the one at 548 nm of samarium compound, are assigned according to the literature values [23–27]. Each emission spectrum is given in a colour that closely corresponds to the wavelength of intense emission peak. The electronic transition for the excitation peak with the wavelength of λ_{ex} is also assigned.

As representative examples, the photoluminescence of europium and dysprosium compounds is discussed here. The excitation spectra ($\lambda_{\text{em}}=615 \text{ nm}$) of europium compound shows four peaks at 360, 374, 393 and 464 nm, due to $f-f$ electronic transition of trivalent europium and the intense peak at 393 nm is attributed to ${}^7F_0 \rightarrow {}^5L_6$ transition. In the emission spectrum ($\lambda_{\text{exc}}=393 \text{ nm}$) shown in red colour, there are six emission peaks at 538, 557, 593, 615, 649 and 700 nm, corresponding to ${}^5D_1 \rightarrow {}^7F_1$, ${}^5D_1 \rightarrow {}^7F_2$, ${}^5D_0 \rightarrow {}^7F_1$, ${}^5D_0 \rightarrow {}^7F_2$, ${}^5D_0 \rightarrow {}^7F_3$ and ${}^5D_0 \rightarrow {}^7F_4$ transitions of Eu^{3+} , respectively. As reported [28] for compounds in which europium does not reside on crystallographic inversion centre, electric dipole allowed ${}^5D_0 \rightarrow {}^7F_2$ emission is more intense than magnetic dipole allowed ${}^5D_0 \rightarrow {}^7F_1$ emission. The possible weak ${}^5D_0 \rightarrow {}^7F_0$ emission at 580 nm is not observed.

The emission spectrum ($\lambda_{\text{ex}}=351 \text{ nm}$) of dysprosium compound has three ${}^4F_{9/2} \rightarrow {}^6H_j$ ($j'=15/2, 13/2$ and $11/2$) transitions at 483, 575 and 670 nm, respectively, and the hypersensitive ${}^4F_{9/2} \rightarrow {}^6H_{13/2}$ transition is allowed [29] because dysprosium atom occupies a symmetry site with no inversion centre. In the lifetime measurement of this compound, the intensity of ${}^4F_{9/2} \rightarrow {}^6H_{13/2}$ emission ($\lambda_{\text{ex}}=355 \text{ nm}$) is found to decrease exponentially with time (Fig. 5) and lifetime is calculated to be $0.69 \mu\text{s}$ [25].

The present study is one of a few reports [18,30–36] of rare earth metal photoluminescence in neat ternary and quaternary oxides of lanthanides. The observed distances of $\sim 6.03 \text{ \AA}$ between the nearest lanthanide A atoms in the title compounds are apparently not short enough for quenching of neat lanthanide photoluminescence. Only a systematic photoluminescence study of doped inter-lanthanide $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ compounds could reveal whether or not partial quenching exists in neat compounds. The isostructural nature of these fifteen title compounds is expected to be conducive for the synthesis of a variety of solid solutions amongst them. Therefore, it should be possible to systematically vary the nature and concentration of rare earth metals, as dopants and co-dopants, to obtain inter-lanthanide $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ compounds and, thereby, to tune the energies and intensities of rare earth metal photoluminescence. A preliminary study in this direction is in progress in our laboratory.

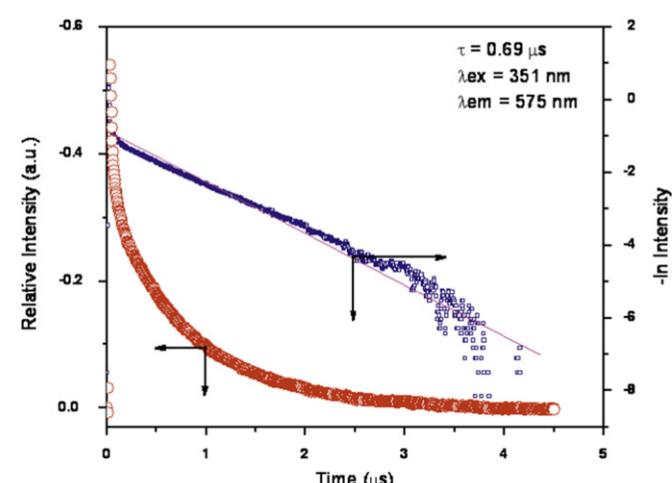


Fig. 5. Room-temperature photoluminescence decay curve of $\text{Dy}_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$.

4. Conclusion

Synthesis of nine new isostructural $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Ce, Pr, Eu, Tb, Ho, Er, Tm, Yb, Lu}$) compounds has been accomplished. These compounds and the previously reported ones together represent the entire isostructural series of fifteen $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ compounds and their unit cell parameters obey Vegard's law. X-ray single crystal structures of $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Ce, Pr, Eu, Gd, Tb, Ho, Er, Tm}$) compounds have been determined. Rare earth metal photoluminescence is observed in neat $A_2\text{Mo}_4\text{Sb}_2\text{O}_{18}$ ($A=\text{Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm}$) compounds.

Acknowledgments

X-ray powder diffractometer in our department of chemistry was purchased with financial assistance, received under FIST scheme (SR/FST/CSI-158/2007), from SERC Division of Department of Science and Technology, Ministry of Science and Technology, Government of India. We thank Mrs. S. Srividya and Mr. V. Ramkumar for powder and single crystal X-ray data collection, respectively. We also thank Sophisticated Analytical Instrument Facility of our institute and National Centre for Ultrafast Processes, University of Madras for photoluminescence measurements.

References

- [1] B. Vidyavathy, K. Vidyasagar, Inorg. Chem. 37 (1998) 4764–4774.
- [2] H.-S. Ra, K.M. Ok, P.S. Halasyamani, J. Am. Chem. Soc. 125 (2003) 7764–7765.
- [3] P.S. Halasyamani, Chem. Mater. 16 (2004) 3586–3592.
- [4] J.G. Mao, H.L. Jiang, F. Kong, Inorg. Chem. 47 (2008) 8498–8510.
- [5] G. Kalpana, K. Vidyasagar, J. Solid State Chem. 180 (2007) 1708–1712.
- [6] References 1–5 and 10–18 cited in [5].
- [7] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 10 (1977) 73–74.
- [8] G.M. Sheldrick, SHELXTL, Bruker AXS, Inc., Madison, WI, 1997.
- [9] G.M. Sheldrick, SADABS, University of Göttingen, Göttingen, Germany, 2004.
- [10] W.T. Pennington, DIAMOND, J. Appl. Crystallogr. 32 (1999) 1028–1029.
- [11] C.K. Johnson, ORTEP, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- [12] J. Laugier, B. Bochu, LMGP Suite for Windows; Laboratoire Des Mat_Eriaux ET Du G_Enie Physique De l'Ecole Nationale Sup_Erieure De Physique De Grenoble: Grenoble, France, available at: <<http://www.Inpg.Fr/LMGP>> and <<http://www.Ccp14.Ac.Uk/Tutorial/Lmgp>>.
- [13] R.D. Shannon, Acta Crystallogr. A32 (1976) 751–767.
- [14] N.E. Brese, M. O'Keeffe, Acta Crystallogr. B47 (1991) 192–197.
- [15] H.Y. Chen, A.W. Sleight, J. Solid State Chem. 63 (1986) 70–75.
- [16] (a) E.T. Khobrakova, V.A. Morozov, A.A. Belik, B.I. Lazoryak, E.G. Khaikina, O.M. Basovich, Zh. Neorg. Khim. 49 (3) (2004) 496–502; (b) O.M. Basovich, E.G. Khaikina, S.F. Solodovnikov, Zh. Neorg. Khim. 45 (10) (2000) 1726–1730.
- [17] (a) P.S. Berdonosov, D.O. Charkin, K.S. Knight, K.E. Johnston, R.J. Goff, V.A. Dolgikh, P. Lightfoot, J. Solid State Chem. 179 (2006) 3437–3444; (b) R.G. Teller, J.F. Brazdil, R.K. Grasselli, R. Thomas, L. Corliss, J. Hastings, J. Solid State Chem. 52 (1984) 313–319; (c) J. Galy, P. Salles, P. Rozier, A. Castro, Solid State Ionics 177 (2006) 2897–2902.
- [18] (a) Y.L. Shen, H.L. Jiang, J. Xu, J.G. Mao, K.W. Cheah, Inorg. Chem. 44 (2005) 9314–9321; (b) H.L. Jiang, E. Ma, J.G. Mao, Inorg. Chem. 46 (2007) 7012–7023.
- [19] (a) D. Drewes, E.M. Limanski, B. Krebs, Eur. J. Inorg. Chem. (2004) 4849–4853; (b) D. Drewes, B. Krebs, Z. Anorg. Allg. Chem. 631 (2005) 2591–2594; (c) Y. Xuehua, M. Shaofen, J. Zhenghua, W. Jigui, Y. Kaling, Synth. React. Inorg. Met.—Org. Nano-Met. Chem. 38 (6) (2008) 529–533.
- [20] R. Balda, M. Voda, M. Al-Saleh, J. Fernández, J. Lumin. 97 (2002) 190–197.
- [21] M. Thomas, P.P. Rao, M. Deepa, M.R. Chandran, P. Koshy, J. Solid State Chem. 182 (2009) 203–207.
- [22] Z. Pan, S.H. Morgan, J. Lumin. 75 (1997) 301–308.
- [23] L. Feng, J. Wang, Q. Tang, C.L. Liang, H. Liang, Q. Su, J. Lumin. 124 (2007) 187–194.
- [24] H. Wang, J. Yang, C.M. Zhang, J. Lin, J. Solid State Chem. 182 (2009) 2716–2724.
- [25] F.S. Liu, Q.L. Liu, J.K. Liang, J. Luo, L.T. Yang, G.B. Song, Y. Zhang, L.X. Wang, J.N. Yao, G.H. Rao, J. Lumin. 111 (2005) 61–68.
- [26] B.C. Jamalaiah, J. Suresh Kumar, A. Mohan babu, L. Rama moorthy, K. Jang, H.S. Lee, M. Jayasimhadri, J.H. Jeong, H. Choi, J. Lumin. 129 (2009) 1023–1028.
- [27] L. Núñez, J.O. Tocho, J.A. Sanz-Garcia, E. Rodriguez, F. Cussó, D.C. Hanna, A.C. Tropper, A.C. Large, J. Lumin. 55 (1993) 253–263.
- [28] H.Y. Lin, Y.C. Fang, X.R. Huang, S.Y. Chuw, J. Am. Ceram. Soc. 93 (1) (2010) 138–141.
- [29] P.-L. Dai, B.-S. Tsai, Y.-Y. Tsai, H.-L. Chen, T.-H. Fang, K.-H. Liao, Y.-S. Chang, Opt. Mater. 32 (2009) 392–397.
- [30] R.A. Benhamou, A. Bessiere, G. Wallez, B. Viana, M. Elaatmani, M. Daoud, A. Zegzouti, J. Solid State Chem. 182 (2009) 2319–2325.
- [31] H. Yamamoto, S. Seki, T. Ishiba, J. Solid State Chem. 94 (1991) 396–403.
- [32] H. Naruke, T. Yamase, J. Solid State Chem. 178 (2005) 702–708.
- [33] A.B. Yusov, A.M. Fedossev, G.B. Andreev, I.B. Shirokova, Mendeleev Commun. 11 (3) (2001) 86–87.
- [34] (a) I. Vidican, M.D. Smith, H.-C. zur Loyer, J. Solid State Chem. 170 (2003) 203–210; (b) I.P. Roof, M.D. Smith, S. Park, H.-C. zur Loyer, J. Am. Chem. Soc. 131 (2009) 4202–4203; (c) I.P. Roof, T.-C. Jagau, W.G. Zeier, M.D. Smith, H.-C. zur Loyer, Chem. Mater. 21 (2009) 1955–1961.
- [35] E.A. Juarez-Arellano, L. Bucio, J.A. Hernandez, E. Camarillo, R.E. Carbonio, E. Orozco, J. Solid State Chem. 170 (2003) 418–423.
- [36] C.A. Kodaira, H.F. Brito, O.L. Malta, O.A. Serra, J. Lumin. 101 (2003) 11–21.